资源类型

期刊论文 1022

会议视频 57

会议专题 1

年份

2024 3

2023 98

2022 102

2021 109

2020 76

2019 70

2018 52

2017 54

2016 41

2015 51

2014 41

2013 28

2012 30

2011 35

2010 35

2009 46

2008 38

2007 43

2006 11

2005 11

展开 ︾

关键词

高速铁路 14

DX桩 9

高质量发展 8

承载力 6

智能制造 6

运载系统 6

创新 5

城镇建设 5

三峡工程 4

关键技术 4

农业科学 4

技术体系 4

京沪高速铁路 3

发展 3

增材制造 3

容量 3

桥梁工程 3

高压 3

2021全球十大工程成就 2

展开 ︾

检索范围:

排序: 展示方式:

Preparation of biomass-derived carbon loaded with MnO as lithium-ion battery anode for improving its reversiblecapacity and cycling performance

《化学科学与工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11705-023-2376-y

摘要: Biomass-derived carbon materials for lithium-ion batteries emerge as one of the most promising anodes from sustainable perspective. However, improving the reversible capacity and cycling performance remains a long-standing challenge. By combining the benefits of K2CO3 activation and KMnO4 hydrothermal treatment, this work proposes a two-step activation method to load MnO2 charge transfer onto biomass-derived carbon (KAC@MnO2). Comprehensive analysis reveals that KAC@MnO2 has a micro-mesoporous coexistence structure and uniform surface distribution of MnO2, thus providing an improved electrochemical performance. Specifically, KAC@MnO2 exhibits an initial charge-discharge capacity of 847.3/1813.2 mAh·g–1 at 0.2 A·g–1, which is significantly higher than that of direct pyrolysis carbon and K2CO3 activated carbon, respectively. Furthermore, the KAC@MnO2 maintains a reversible capacity of 652.6 mAh·g–1 after 100 cycles. Even at a high current density of 1.0 A·g–1, KAC@MnO2 still exhibits excellent long-term cycling stability and maintains a stable reversible capacity of 306.7 mAh·g–1 after 500 cycles. Compared with reported biochar anode materials, the KAC@MnO2 prepared in this work shows superior reversible capacity and cycling performance. Additionally, the Li+ insertion and de-insertion mechanisms are verified by ex situ X-ray diffraction analysis during the charge-discharge process, helping us better understand the energy storage mechanism of KAC@MnO2.

关键词: biomass-derived carbon     MnO2     lithium-ion batteries     anode material     high reversible capacity    

基于自适应四叉树分块与最高有效位预测的大容量密文域可逆信息隐藏算法 Research Article

祁凯莉,张敏情,狄富强,孔咏骏

《信息与电子工程前沿(英文)》 2023年 第24卷 第8期   页码 1156-1168 doi: 10.1631/FITEE.2200501

摘要: 为提高密文域可逆信息隐藏(reversible data hiding in encrypted images,RDH-EI)算法的嵌入容量,提出一种基于自适应四叉树分块和最高有效位(most significant

关键词: 自适应四叉树分块;自适应最高有效位预测;密文域可逆信息隐藏;高嵌入容量    

Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 853-866 doi: 10.1007/s11705-022-2256-x

摘要: The discharge of large amounts of dye-containing wastewater seriously threats the environment. Adsorbents have been adopted to remove these dyes present in the wastewater. However, the high adsorption capacity, predominant pH-responsibility, and excellent recyclability are three challenges to the development of efficient adsorbents. The poly(acryloxyethyl trimethylammonium chloride)-graft-dialdehyde cellulose nanocrystals were synthesized in our work. Subsequently, the cationic dialdehyde cellulose nanocrystal cross-linked chitosan nanocomposite foam was fabricated via freeze-drying of the hydrogel. Under the optimal ratio of the cationic dialdehyde cellulose nanocrystal/chitosan (w/w) of 12/100, the resultant foam (Foam-12) possesses excellent absorption properties, such as high porosity, high content of active sites, strong acid resistance, and high amorphous region. Then, Foam-12 was applied as an eco-friendly adsorbent to remove acid red 134 (a representative of anionic dyes) from aqueous solutions. The maximum dye adsorption capacity of 1238.1 mg∙g‒1 is achieved under the conditions of 20 mg∙L‒1 adsorbents, 100 mg∙L‒1 dye, pH 3.5, 24 h, and 25 °C. The dominant adsorption mechanism for the anionic dye adsorption is electrostatic attraction, and Foam-12 can effectively adsorb acid red 134 at pH 2.5–5.5 and be desorbed at pH 8. Its easy recovery and good reusability are verified by the repeated acid adsorption–alkaline desorption experiments.

关键词: chitosan foam     cellulose nanocrystals     acid red 134     adsorption    

Learning from biological attachment devices: applications of bioinspired reversible adhesive methods

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0699-x

摘要: Many organisms have attachment organs with excellent functions, such as adhesion, clinging, and grasping, as a result of biological evolution to adapt to complex living environments. From nanoscale to macroscale, each type of adhesive organ has its own underlying mechanisms. Many biological adhesive mechanisms have been studied and can be incorporated into robot designs. This paper presents a systematic review of reversible biological adhesive methods and the bioinspired attachment devices that can be used in robotics. The study discussed how biological adhesive methods, such as dry adhesion, wet adhesion, mechanical adhesion, and sub-ambient pressure adhesion, progress in research. The morphology of typical adhesive organs, as well as the corresponding attachment models, is highlighted. The current state of bioinspired attachment device design and fabrication is discussed. Then, the design principles of attachment devices are summarized in this article. The following section provides a systematic overview of climbing robots with bioinspired attachment devices. Finally, the current challenges and opportunities in bioinspired attachment research in robotics are discussed.

关键词: adhesion     bioinspired attachment     biomimetic gripper     climbing robot    

Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems

《能源前沿(英文)》 2023年 第17卷 第3期   页码 320-323 doi: 10.1007/s11708-023-0889-1

摘要: Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems

关键词: materials systems    

Calculation of diagonal section and cross-section bending capacity for strengthening RC structure usinghigh-performance ferrocement laminate

Shouping SHANG , Fangyuan ZHOU , Wei LIU ,

《结构与土木工程前沿(英文)》 2009年 第3卷 第3期   页码 330-338 doi: 10.1007/s11709-009-0046-x

摘要: Because there is a great demand of reinforcement and retrofitting of aged structures nationwide, as well as the rapid development of innovative building materials, the adoption of strengthening RC structures using new inorganic materials has become possible. High-performance ferrocement laminate (HPFL) is an effective method of strengthening concrete structure. High-performance ferrocement laminate is a new type of inorganic material with the advantages such as high strength, small contraction, good bonding properties, etc. This paper introduces the formula of cross-section bending capacity for strengthening concrete beams with HPEL. A comparative analysis of experimental data, as well as the calculation of diagonal section bearing capacity of concrete members, is given.

关键词: RC beams     high-performance ferrocement laminate (HPFL)     inorganic material     reinforcement    

基于量子点元胞自动机的超高效可逆块的纳米设计 Research Article

Seyed Sajad AHMADPOUR1, Nima Jafari NAVIMIPOUR1, Mohammad MOSLEH2, Senay YALCIN3

《信息与电子工程前沿(英文)》 2023年 第24卷 第3期   页码 447-456 doi: 10.1631/FITEE.2200095

摘要: 可逆逻辑由于其固有的降低能量耗散的能力最近受到极大关注。这种降低能量耗散的能力是低功耗数字电路的首要需求。可逆逻辑是相关研究的最新领域之一,在纳米技术、DNA计算、量子计算、容错和低功耗互补金属氧化物半导体(CMOS)等方面都有广泛应用。一个电路如果具有相同数量的输入和输出,并且是一一对应的,则被归类为可逆电路。如果输入和输出的异或门相等,则可逆电路是保守的。此外,量子点元胞自动机(QCA)是最先进的方法之一,可以替代传统技术。因此,本文提出一种低功耗、高速度的高效保守门。首先提出一个可逆门ANG (Ahmadpour Navimipour Gate),然后在QCA技术中实现非抗性ANG和可逆容错ANG两种结构。通过米勒算法实现所提可逆门,并通过2DW(二维设计)时钟电路图实现可逆容错ANG。此外,在不同的能量范围(0.5Ek,1.0Ek和1.5Ek)评估所提ANG门的功耗,并使用QCADesigner 2.0.03和QCAPro软件进行结构模拟和功耗分析。与之前的设计相比,所提可逆门具有很大提升。

关键词: 纳米技术;可逆逻辑;能量耗散;量子点元胞自动机(QCA);可逆门;米勒算法    

Performance assessment of a power-to-gas process based on reversible solid oxide cell

Hanaâ Er-rbib, Nouaamane Kezibri, Chakib Bouallou

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 697-707 doi: 10.1007/s11705-018-1774-z

摘要:

Due to the foreseen growth of sustainable energy utilization in the upcoming years, storage of the excess production is becoming a rather serious matter. In this work, a promising solution to this issue is investigated using one of the most emerging technologies of electricity conversion: reversible solid oxide cells (RSOC). A detailed model was created so as to study the RSOC performance before implementing it in the global co-electrolysis Aspen PlusTM model. The model was compared to experimental results and showed good agreement with the available data under steady state conditions. The system was then scaled up to a 10 MW co-electrolysis unit operating at 1073 K and 3 bar. The produced syngas is subsequently directed to a methanation unit to produce a synthetic natural gas (SNG) with an equivalent chemical power of 8.3 MWth. Additionally, as a result of a heat integration analysis, the methanation process provides steam and electricity to operate the rest of the units in the process. A final CO2 capture step is added to ensure the required specifications of the produced SNG for gas network injection. Lastly, the overall performance of the power-to-gas process was evaluated taking into account the energy consumption of each unit.

关键词: renewable electricity     storage     co-electrolysis     methanation     carbone capture    

Function-reversible facets enabling SrTiO nanocrystals for improved photocatalytic hydrogen evolution

《能源前沿(英文)》 doi: 10.1007/s11708-023-0894-4

摘要: It has been widely reported that, for faceted nanocrystals, the two adjacent facets with different band levels contribute to promoted charge separation, and provide active sites for photocatalytic reduction and oxidation reaction, respectively. In such cases, only one family of facets can be used for photocatalytic hydrogen evolution. Herein, by using SrTiO3 nanocrystals enclosed by {023} and {001} facets as a model photocatalyst, this paper proposed a strategy to achieve the full-facets-utilization of the nanocrystals for photocatalytic hydrogen via chemically depositing Pt nanoparticles on all facets. The photo-deposition experiment of CdS provided direct evidence to demonstrate that the {023} facets which were responsible for photooxidation reaction can be function-reversed for photocatalytic hydrogen evolution after depositing Pt nanoparticles, together with the {001} facets. Thus, the full-facets-utilization led to a much-improved activity for photocatalytic hydrogen, in contrast to those SrTiO3 nanocrystals with only {001} facets deposited by Pt nanoparticles via a photo-deposition method.

关键词: SrTiO3 nanocrystals     crystal facets     photocatalysis     hydrogen evolution    

Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and

Ming Zhao, Run Liu, Jian Luo, Yan Sun, Qinghong Shi

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 120-132 doi: 10.1007/s11705-018-1730-y

摘要: In this work, we have synthesized two polymer-grafted cation exchangers: one via the grafting-from approach, in which sulfopropyl methacrylate (SPM) is grafted through atom transfer radical polymerization onto Sepharose FF (the thus resulting exchanger is referred as Sep- -SPM), and another via the grafting-to approach, in which the polymer of SPM is directly coupled onto Sepharose FF (the thus resulting exchanger is called as Sep- SPM). Protein adsorption on these two cation exchangers have been also investigated. At the same ligand density, Sep- -SPM has a larger accessible pore radius and a smaller depth of polymer layer than Sep- SPM, due to the controllable introduction of polymer chains with the regular distribution of the ligand. Therefore, high-capacity adsorption of lysozyme and -globulin could be achieved simultaneously in Sep- -SPM with an ionic capacity (IC) of 308 mmol·L . However, Sep- SPM has an irregular chain distribution and different architecture of polymer layer, which lead to more serious repulsive interaction to proteins, and thus Sep- SPM has a lower adsorption capacity for -globulin than Sep- -SPM with the similar IC. Moreover, the results from protein uptake experiments indicate that the facilitated transport of adsorbed -globulin occurs only in Sep- SPM and depends on the architecture of polymer layers. Our research provides a clear clue for the development of high-performance protein chromatography.

关键词: polymer-grafted ionic exchanger     grafting technique     protein adsorption     atom transfer radical polymerization     γ-globulin    

Amino acid promoted hydrogen battery system using Mn-pincer complex for reversible CO hydrogenation to

《能源前沿(英文)》 2022年 第16卷 第5期   页码 697-699 doi: 10.1007/s11708-022-0843-7

Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode

Krishnaveni Kalaiappan, Subadevi Rengapillai, Sivakumar Marimuthu, Raja Murugan, Premkumar Thiru

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 976-987 doi: 10.1007/s11705-019-1897-x

摘要: Hierarchically-porous carbon nano sheets were prepared as a conductive additive for sulfur/polyacrylonitrile (S/PAN) composite cathodes using a simple heat treatment. In this study, kombucha (that was derived from symbiotic culture of bacteria and yeast) carbon (KC) and graphene oxide (GO) were used as a carbon host matrix. These rational-designed S/PAN/KC/GO hybrid composites greatly suppress the diffusion of polysulfides by providing strong physical and chemical adsorption. The cathode delivered an initial discharge capacity of 1652 mAh·g at a 0.1 C rate and a 100 cycle capacity of 1193 mAh·g . The nano sheets with embedded hierarchical pores create a conductive network that provide effective electron transfer and fast electrochemical kinetics. Further, the nitrogen component of PAN can raise the affinity/interaction of the carbon host with lithium polysulfides, supporting the cyclic performance. The results exploit the cumulative contribution of both the conductive carbon matrix and PAN in the enhanced performance of the positive electrode.

关键词: sulfur cathode     kombucha SCOBY     graphene oxide     polyacrylonitrile     lithium-sulfur battery    

Studying the stress-suction coupling in soils using an oedometer equipped with a high capacity tensiometer

Trung Tinh LE, Yu-Jun CUI, Juan Jorge MU?OZ, Pierre DELAGE, Anh Minh TANG, Xiang-Ling LI

《结构与土木工程前沿(英文)》 2011年 第5卷 第2期   页码 160-170 doi: 10.1007/s11709-011-0106-x

摘要: In the context of research into deep nuclear waste disposal, various works have concerned the hydromechanical behavior of Boom clay, a stiff plastic clay extracted in the SCK-CEN Underground Research Laboratory near the Mol City (Belgium), at a depth of 223 m. Due to some amount of smectite minerals in the clay fraction, Boom clay exhibits swelling properties when hydrated under low stresses. To investigate some aspects of the hydromechanical behavior of Boom clay, oedometer compression tests were carried out on samples of Boom clay close to saturation and submitted to an initial suction. During oedometer compression, the changes in suction with increased vertical stress are monitored by means of a high capacity tensiometer installed at the bottom of the sample. Some aspects related to hydromechanical couplings are examined through the investigation of the changes in suction during oedometer compression, a somewhat delicate and poorly documented experimental approach. A comparison is also made with a completely different soil sample under suction, i.e. a statically compacted unsaturated low plasticity silt. Some technical difficulties typical of this new experimental approach are first described in detail so as to optimize the interpretation of the data obtained. The experiment allows the determination of the point at which suction is changed to positive pressure during compression. Below this point, the ratio between the vertical stress and the change in suction are determined. Above this point, the data show that positive pore pressures are dissipated in a common way. The suction/stress behavior during unloading is also described and discussed. Finally, an interpretation in terms of microstructure effects is provided for both samples. The experimental approach initiated here seems to provide interesting further application to better understand hydromechanical couplings in natural soils in relation with suction increase during stress release.

关键词: Oedometer     tensiometer     swelling     physicochemical and mechanical effects     stress/suction coupling     soil plasticity    

Quantum-dot cellular automata based reversible low power parity generator and parity checker design for

Jadav Chandra DAS,Debashis DE

《信息与电子工程前沿(英文)》 2016年 第17卷 第3期   页码 224-236 doi: 10.1631/FITEE.1500079

摘要: Quantum-dot cellular automata (QCA) is an emerging area of research in reversible computing. It can be used to design nanoscale circuits. In nanocommunication, the detection and correction of errors in a received message is a major factor. Besides, device density and power dissipation are the key issues in the nanocommunication architecture. For the first time, QCA-based designs of the reversible low-power odd parity generator and odd parity checker using the Feynman gate have been achieved in this study. Using the proposed parity generator and parity checker circuit, a nanocommunication architecture is proposed. The detection of errors in the received message during transmission is also explored. The proposed QCA Feynman gate outshines the existing ones in terms of area, cell count, and delay. The quantum costs of the proposed conventional reversible circuits and their QCA layouts are calculated and compared, which establishes that the proposed QCA circuits have very low quantum cost compared to conventional designs. The energy dissipation by the layouts is estimated, which ensures the possibility of QCA nano-device serving as an alternative platform for the implementation of reversible circuits. The stability of the proposed circuits under thermal randomness is analyzed, showing the operational efficiency of the circuits. The simulation results of the proposed design are tested with theoretical values, showing the accuracy of the circuits. The proposed circuits can be used to design more complex low-power nanoscale lossless nanocommunication architecture such as nano-transmitters and nano-receivers.

关键词: Quantum-dot cellular automata (QCA)     Parity generator     Parity checker     Feynman gate     Nanocommunication     Power dissipation    

oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating for high

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1244-1253 doi: 10.1007/s11705-022-2293-5

摘要: Vanadium oxides as cathode for zinc-ion batteries have attracted much attention because of their high theoretical capacity, flexible layered structure and abundant resources. However, cathodes are susceptible to the collapse of their layered structure and the dissolution of vanadium after repeated long cycles, which worsen their capacities and cycling stabilities. Herein, a synergistic engineering of calcium-ion intercalation and polyaniline coating was developed to achieve the superior electrochemical performance of vanadium pentoxide for zinc-ion batteries. The pre-intercalation of calcium-ion between vanadium pentoxide layers as pillars increase the crystal structure’s stability, while the polyaniline coating on the cathodes improves the conductivity and inhibits the dissolution of vanadium. This synergistic engineering enables that the battery system based-on the polyaniline coated calcium vanadate cathode to deliver a high capacity of 406.4 mAh·g−1 at 1 A·g−1, an ultralong cycle life over 6000 cycles at 10 A·g−1 with 93% capacity retention and high-rate capability. The vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating was verified to effectively improve the electrochemical performance of zinc-ion batteries.

关键词: zinc-ion battery     CaV8O20     polyaniline coating     synergistic engineering     high capacity     long durability    

标题 作者 时间 类型 操作

Preparation of biomass-derived carbon loaded with MnO as lithium-ion battery anode for improving its reversiblecapacity and cycling performance

期刊论文

基于自适应四叉树分块与最高有效位预测的大容量密文域可逆信息隐藏算法

祁凯莉,张敏情,狄富强,孔咏骏

期刊论文

Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal

期刊论文

Learning from biological attachment devices: applications of bioinspired reversible adhesive methods

期刊论文

Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems

期刊论文

Calculation of diagonal section and cross-section bending capacity for strengthening RC structure usinghigh-performance ferrocement laminate

Shouping SHANG , Fangyuan ZHOU , Wei LIU ,

期刊论文

基于量子点元胞自动机的超高效可逆块的纳米设计

Seyed Sajad AHMADPOUR1, Nima Jafari NAVIMIPOUR1, Mohammad MOSLEH2, Senay YALCIN3

期刊论文

Performance assessment of a power-to-gas process based on reversible solid oxide cell

Hanaâ Er-rbib, Nouaamane Kezibri, Chakib Bouallou

期刊论文

Function-reversible facets enabling SrTiO nanocrystals for improved photocatalytic hydrogen evolution

期刊论文

Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and

Ming Zhao, Run Liu, Jian Luo, Yan Sun, Qinghong Shi

期刊论文

Amino acid promoted hydrogen battery system using Mn-pincer complex for reversible CO hydrogenation to

期刊论文

Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode

Krishnaveni Kalaiappan, Subadevi Rengapillai, Sivakumar Marimuthu, Raja Murugan, Premkumar Thiru

期刊论文

Studying the stress-suction coupling in soils using an oedometer equipped with a high capacity tensiometer

Trung Tinh LE, Yu-Jun CUI, Juan Jorge MU?OZ, Pierre DELAGE, Anh Minh TANG, Xiang-Ling LI

期刊论文

Quantum-dot cellular automata based reversible low power parity generator and parity checker design for

Jadav Chandra DAS,Debashis DE

期刊论文

oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating for high

期刊论文